; ------------------------------------------------------------------------ ; FILE : LCD4DIEC.ASM - variation with 4 bite LCD communication * ; (4-bites, high nibble, RB4..RB7 data, RA0..RA2 control) * ; CONTENTS : Simple low-cost 7-digit digital scale using a PIC16F84 * ; COPYRIGHT: Peter Halicky OM3CPH * ; AUTHOR : Peter Halicky OM3CPH & Peter Halicky Jr., OM2PH ex OM2APH * ; PCB : Tibor Madarasz OM2ATM * ;-------------------------------------------------------------------------- ; Osmo OH6CJ: 08.03.2001 Modifications for 4000 kHz crystal: ; Added: RF offset1 when RB1 = 0 and RF offset2 when RB1 = 1. ; EEPROM routine to select either 1x16 or 2x20 LCD control. ; EEPROM routine to select either 6 or 7 digits to be displayed. ; When RB2=1, direct frequency is displayed (no add or sub RF). ; RB3 to control decimal point location with additional 10 divider. ; Added calibration parameters for time window (EEPROM 07h,08h). ; Osmo OH6CJ: 17.03.2001 ; Modified EEPROM TEXTS "ADDR" and "MODE" instead of A: ; Added sw version number 1.0 for EEPROM TEXT display ; Osmo OH6CJ: 31.03.2001 ; Added Busy checkings after the clear display and cursor ; positioning instructions because problems observed with certain ; 1x16 LCDs types (slow display updating, flashing or freezing). ; Changed E Data R/W start pulse bit set and clear procedure. ; First digit on left (10 MHz) is not displayed if zero. ; Osmo OH6CJ: 27.04.2001 ; Added default values writing to EEPROM during first power-on. ; Added EEPROM address 06h to select direct freq as a default. ; Changed sw version to 1.2 in EEPROM MODE window. ;-------------------------------------------------------------------------- ; The EEPROM MODE is activated when RB0 = 1 and power is ; connected. ;-------------------------------------------------------------------------- ; The used EEPROM addresses are: ; 00 = MFt1_HigB = High Byte of RF offset1 (def. 0D) 9001.50 kHz = 0DBC36 ; 01 = MFt1_MidB = Mid Byte of RF offset1 (def. BC) ; 02 = MFt1_LowB = Low Byte of RF offset1 (def. 36) ; 03 = MFt2_HigB = High Byte of RF offset2 (def. 0D) 8998.50 khz = 0DBB0A ; 04 = MFt2_MidB = Mid Byte of RF offset2 (def. BB) ; 05 = MFt2_LowB = Low Byte of RF offset2 (def. 0A) ; 06 = Dir_freq = Direct frequency without sub or add functions = 0 def. ; 07 = EE_Fine1 = Counter value for calibration 1 == 3*4/fx= 3us (def. 15) ; 08 = EE_Fine2 = Counter value for calibration 1 == 4*4/fx= 4us (def. 01) ; 09 = 1x16_Disp = LCD display type: 0 = 1x16 LCD, 1 = 2x20 LCD (def. 01) ; 0A = Digits = Number of displayed digits: 0 = 7 digits, 1 = 6 (def. 1) ; 0B...0F = (not in use) ;-------------------------------------------------------------------------- ; E-Mail: halicky@minv.sk or om3cph@oe3xbs.aut.eu ; peto-h@writeme.com or om2ph@om0pbm.svk.eu ; ; Bratislava, Slovakia, December 1998, revised & debugged February, 2000 ; ; Further modified 2001 by oh6cj@sral.fi ;-------------------------------------------------------------------------- ; This is 7-digit frequency meter counting up to 35 MHz. The decimal point ; is after MHz digit, but can be at any position. ; ; It adds or substracts RF according signal level at RA2: ; +5V - adds RF (offset2) ; disconnected - substracts RF (offset1) ; ; Hardware is very simple: ; ; It contains : PIC 16F84 ; 1 NPN low power HF Si transistor, ; 16 character (2x8) in 1 Line LCD display, ; Xtal 1..10 MHz, ; some resistors, capacitors and 2 Si switching diodes... ; (see schematic) ; Note: ; LCD display is 16 character in 1 line LCD display PVC160101PTN which ; seems to be compatible with TWO LINES HITACHI LCD display, except ; that that one has only 8 characters in 1 line. ; See EEPROM parameter 09h to select either 1x16 or 2x20 ; ; The counter uses internal prescaler of PIC as low byte of counter, ; TMR0 as middle byte and some register as high byte of counter. ; ; Some ideas were taken from "Simple low-cost digital frequency meter ; using a PIC 16C54" (frqmeter.asm) ; written by James Hutchby, MadLab Ltd. 1996 ; ; LCD interfacing was completly taken from Norm Cramer's LCD.ASM ; ------------------------------------------------------------------------ ; ; This software is free for private usage. It was created for HAM radio ; community members. Commercial exploatation is allowed only with permission ; of authors. ; ; ------------------------------------------------------------------------ ; ; The measuring period is 100 000 us. ; Procesor cycle is T = 4/Fx [us,MHz], Fx is Xtal frequency ; ; Number of processor cycles per measuring period: ; ; N = 100 000/T processor cycles ; N = Fx * 100 000/4 = 25 000 x Fx ; ; The main steps of measuring period: ; ; 1. decode 3-byte value into 7 decimal numbers, ; 2. decode decimal value of digit to chars, ; 3. set decimal point if needed, ; 4. output to PORTB (LCD) either 6 or 7 digits, ; 5. start measurement, ; 6. test TMR0 overflow bite, if YES increase TimerH, ; 7. goto 5 until measuring period is done, ; 8. stop measurement, ; 9. shift out precounter content, ; 10. Add/substract RF according signal from optocoupler, ; 11. goto 1 ; ; ------------------------------------------------------------------------ ; Total timing formula: N = 25 000 * Fx = ((9*T1+4)*T2+4)*T3+5+9*T4+Z ; ; N = 25 000 * Fx [MHz] ; ; Example: Fx = 4 MHz ; ; N = 25 000 * 4 = 100 000 ; N = 25 000 * Fx = ((9*T1+4)*T2+4)*T3+5+9*T4+Z ; ; SW Tuning ; ----------- ; The calibration tuning is possible by EEPROM parameters 07h and ; 08h. The minimum step is 1 us based on the 4 MHz crystal. ; Relation is 1 us/100000 us. == 0.00001. ; A bit smaller value for T4 is used than calculated above to get area ; for final correction +/- by EE_fine1 and EE_fine2. The correct ; calibration value is found by means of the combination of EE_fine1&2 ; and comparing to reference source. ; E.g. the freq. of calibrated reference source is 10.00000 MHz and ; counter shows 9.99980 MHz. EE_fine1 = 14 and EE_fine2 = 1 ; EE_fine1 & 2 delay = 14*3 us + 1*4 us = 46 us. ; The counting window is too short. Let's count the absolute influence ; value on 10 MHz: 0.00001 * 10 MHz = 100 Hz. Now we can calculate that ; we must increase value by 20 Hz == 2 us. ; The results are EE_fine1 =12 and EE_fine2 =3 (12*3us + 3*4us) = 48 us ; The most accurate tuning is made by adjusting one of the capacitor in ; the crystal circuit. ; ------------------------------------------------------------------------ include ; ------------------------------------------------------------------------ Index equ 0Ch ; dummy register Count equ 0Dh ; inkremental register Help equ 0Eh ; dummy register LED0 equ 0Fh LED1 equ 010h LED2 equ 011h LED3 equ 012h LED4 equ 013h LED5 equ 014h LED6 equ 015h CHAR equ 016h ; LCD subroutines internal use TimerH equ 017h ; the highest byte of SW counter LowB equ 018h ; low byte of resulted frequency MidB equ 019h ; middle byte of resulted frequency HigB equ 01Ah ; high byte of resulted frequency TEMP equ 01Bh ; temporary register HIndex equ 01Ch ; index register LEDIndex equ 01Dh ; LED pointer R1 equ 01Eh ; Timing counters R2 equ 01Fh R3 equ 020h USER_EEADR equ 025h ; EEPROM address USER_EEDATA equ 026h ; EEPROM data EE_ALR_READ equ 027h ; EEPROM address already read EE_Fine1 equ 028h ; EEPROM calibration parameter 1 EE_Fine2 equ 029h ; EEPROM calibration parameter 2 Help2 equ 02Ah ; temporary register ; ------------------------------------------------------------------------ ; LCD variables ; ------------------------------------------------------------------------ ;Xtal equ 4 ; MHz DELAY15 equ .21 ; 1+15000*Xtal/4/770 DELAY4100 equ .7 ; 1+4100*Xtal/4/770 DELAY100 equ 1 ; 1+100*Xtal/4/770 LINE0 equ 0 LINE1 equ 040h E equ 2 ; LCD Enable control line RA2 R_W equ 1 ; LCD Read/Write control line RA1 RS equ 0 ; LCD Register-Select control line RA0 ; PORTB bits ; LCD Data are sent through RB4 - RB7 ; ------------------------------------------------------------------------ ; timing loop values ; must be from 1 to 255!!! T1 equ .199 ; first timing loop T2 equ .11 ; second timing loop T3 equ .5 ; third timing loop T4 equ .130 ; last timing loop ; ------------------------------------------------------------------------ org 0 Start clrf STATUS ; Do initialization, Select bank 0 clrf INTCON ; Clear int-flags, Disable interrupts clrf PCLATH ; Keep in lower 2KByte clrf PORTA ; ALL PORT output should output Low. clrf PORTB clrf Index clrf LEDIndex clrf LED0 clrf LED1 clrf LED2 clrf LED3 clrf LED4 clrf LED5 clrf LED6 clrf LowB clrf MidB clrf HigB bsf STATUS,RP0 movlw b'00010000' ; RA0..RA3 outputs movwf TRISA ; RA4 input movlw 0xFF ; RB0..RB7 inputs movwf TRISB bsf OPTION_REG,NOT_RBPU ; Disable PORTB pull-ups clrwdt movlw b'10100111' ; Prescaler -> TMR0, movwf OPTION_REG ; 1:256, rising edge bcf STATUS,RP0 ; ; Initilize LC-Display Module ; Busy-flag is not yet valid clrf PORTA ; ALL PORT output should output Low. ; Initilize the LCD Display Module clrf PORTB ; ALL PORT output should output Low bcf PORTA,E ; Clear all controll lines bcf PORTA,RS bcf PORTA,R_W movlw DELAY15 ; Wait for 15ms for LCD to get powered up movwf R1 clrf R2 LCycle decfsz R2,F goto LCycle ; 3*256 decfsz R1,F ; 3*256+1 goto LCycle ;(3*256+2)*R1=770*R1 in procesor cycles ;****************************************************************************** ; Initialization of LCD display ;****************************************************************************** movlw 0x0F andwf PORTB,F ; Clear the upper nibble movlw 0x030 ; Command for 4-bit interface high nibble iorwf PORTB ; Send data to LCD bsf STATUS,RP0 ; Select Register page 1 movlw 0x0F andwf TRISB,W movwf TRISB ; Set Port for output bcf STATUS,RP0 ; Select Register page 0 bsf PORTA,E ; Clock the initalize command to LCD module bcf PORTA,E movlw DELAY4100 ; Delay for at least 4.1ms before continuing movwf R1 clrf R2 LCycle2 decfsz R2,F goto LCycle2 ; 3*256 decfsz R1,F ; 3*256+1 goto LCycle2 ;(3*256+2)*R1=770*R1 in procesor cycles bsf PORTA,E ; Clock the initalize command to LCD module bcf PORTA,E movlw DELAY100 ; Wait for 100 us movwf R1 clrf R2 LCycle3 decfsz R2,F goto LCycle3 ; 3*256 decfsz R1,F ; 3*256+1 goto LCycle3 ;(3*256+2)*R1=770*R1 in procesor cycles movlw 0x0F andwf PORTB,F ; Clear the upper nibble movlw 020h ; Command for 4-bit interface high nibble iorwf PORTB ; Send data to LCD bsf PORTA,E ; Clock the initalize command to LCD module bcf PORTA,E movlw 0x028 ; 4 bits, 2 lines, 5x7 Font call PutCMD movlw B'00001000'; disp.off, curs.off, no-blink call PutCMD movlw 1 ; LCD clear call PutCMD movlw B'00001100'; disp.on, curs.off call PutCMD movlw B'00000110'; auto-inc (shift-cursor) call PutCMD ;------------------------------------------------------------------------ movlw 7 ; Read calibration values from EEPROM movwf USER_EEADR call EE_read movwf EE_Fine1 movlw 8 ; Read calibration values from EEPROM movwf USER_EEADR call EE_read movwf EE_Fine2 ;------------------------------------------------------------------------ ; This checks the first power-on. If true then save initial values to ; EEPROM memory. Finger print of this procedure is in EE address 00Fh ;------------------------------------------------------------------------ movlw 00Fh ; EE address 00Fh movwf USER_EEADR call EE_read ; Read EEPROM address 0Fh movwf TEMP ; If data in EE address 0Fh is not zero, btfsc STATUS,Z ; then skip to Mode_test goto Mode_test movlw 'E' call PutCHAR ; Display character movlw 'E' call PutCHAR ; Display character movlw '-' call PutCHAR ; Display character movlw 'I' call PutCHAR ; Display character movlw 'N' call PutCHAR ; Display character movlw 'I' call PutCHAR ; Display character movlw 'T' call PutCHAR ; Display character movlw ':' call PutCHAR ; Display character call Delay_200ms movlw 0 ; Start saving of default data movwf USER_EEADR ; from EE address 0h Next_Data_to_EE movf USER_EEADR,W movwf EEADR ; Save address for EE writing routine call EE_Table ; W contains address of EE_table movwf EEDATA ; Save data to EE writing routine call EE_write ; Writing to EEPROM subroutine movlw LINE1 ; continue at right half of the display iorlw 080h ; Function set call PutCMD ; set cursor leftmost at the first line call Busy ; Wait until positioned (takes 40 us) movf USER_EEADR,W call CharTable ; Pick up char to be displayed. call PutCHAR ; Display EEADR as ASCII character call Delay_200ms ; Delay is needed to get PIC ready ; for next EEPROM save function! ; Otherwise this loop doesn't work! movf USER_EEADR,W sublw 00Fh ; Loop test for addresses 00h...0Fh btfss STATUS,C ; if C = 0 --> negative result goto Mode_test ; Address 0F completed -> exit this incf USER_EEADR,F ; increment USER_EEADR goto Next_Data_to_EE ; ;------------------------------------------------------------------------ ; This checks the normal counter mode or EEPROM SETTINGS mode acc. RB0 ;------------------------------------------------------------------------ Mode_test movlw 1 ; LCD clear call PutCMD btfss PORTB,0 goto Entry ; to line 509 goto EE_Routines ; if RB0 = 1 then to EE settings ;------------------------------------------------------------------------ ; Tables for 3 byte constants ;------------------------------------------------------------------------ ; Table of decades ;------------------------------------------------------------------------ DecTable addwf PCL,F ; W + PCL -> PCL retlw 0 ; 10 retlw 0 ; retlw 0Ah ; retlw 0 ; 100 retlw 0 ; retlw 064h ; retlw 0 ; 1 000 retlw 03h ; retlw 0E8h ; retlw 0 ; 10 000 retlw 027h ; retlw 010h ; retlw 01h ; 100 000 retlw 086h ; retlw 0A0h ; retlw 0Fh ; 1 000 000 retlw 042h ; retlw 040h ; CharTable addwf PCL,F ; W + PCL -> PCL retlw '0' ; retlw '1' ; retlw '2' ; retlw '3' ; retlw '4' ; retlw '5' ; retlw '6' ; retlw '7' ; retlw '8' ; retlw '9' ; retlw 'A' ; retlw 'B' ; retlw 'C' ; retlw 'D' ; retlw 'E' ; retlw 'F' ; ;-------------------------------------------------------------------------- ; The used EEPROM addresses and default values: ; 00 = MFt1_HigB = High Byte of RF offset1 (def. 0D) 9001.50 kHz = 0DBC36 ; 01 = MFt1_MidB = Mid Byte of RF offset1 (def. BC) ; 02 = MFt1_LowB = Low Byte of RF offset1 (def. 36) ; 03 = MFt2_HigB = High Byte of RF offset2 (def. 0D) 8998.50 khz = 0DBB0A ; 04 = MFt2_MidB = Mid Byte of RF offset2 (def. BB) ; 05 = MFt2_LowB = Low Byte of RF offset2 (def. 0A) ; 06 = Dir_freq = Direct frequency without sub or add functions = 0 def. ; 07 = EE_Fine1 = Counter value for calibration 1 == 3*4/fx= 3us (def. 15) ; 08 = EE_Fine2 = Counter value for calibration 1 == 4*4/fx= 4us (def. 01) ; 09 = 1x16_Disp = LCD display type: 0 = 1x16 LCD, 1 = 2x20 LCD (def. 01) ; 0A = Digits = Number of displayed digits: 0 = 7 digits, 1 = 6 (def. 1) ; 0B...0F = (not in use) ;-------------------------------------------------------------------------- ; Default data table for EEPROM addresses 00h...0Fh ;-------------------------------------------------------------------------- EE_Table addwf PCL,F ; W + PCL -> PCL retlw 00Dh ; 00h retlw 0BCh ; 01h retlw 036h ; 02h retlw 00Dh ; 03h retlw 0BBh ; 04h retlw 00Ah ; 05h retlw 000h ; 06h retlw 015h ; 07h retlw 001h ; 08h retlw 000h ; 09h retlw 000h ; 0A retlw 0FFh ; 0B retlw 0FFh ; 0C retlw 0FFh ; 0D retlw 0FFh ; 0E retlw 000h ; 0F ; This is used as finger print ; to do this subroutine only once. ;************************************************************************* ; LCD Module Subroutines ;======================================================================== ; Busy: Returns when LCD busy-flag is inactive ; PORTA returns as RA0..RA2 output, RA3,RA4 input ;************************************************************************ Busy bsf STATUS,RP0 ; Select Register page 1 movlw 0xF0 ; Set port to input iorwf TRISB,W ; Only set upper half of port movwf TRISB movlw b'00011000' ; PORTA should be set RA0..RA2 output movwf TRISA ; RA3,RA4 input bcf STATUS,RP0 ; Select Register page 0 bcf PORTA,RS ; Set LCD for Command mode bsf PORTA,R_W ; Setup to read busy flag bsf PORTA,E ; Set E high movf PORTB,W ; Read upper nibble busy flag, DDRam address andlw 0xF0 ; Mask out lower nibble movwf TEMP bcf PORTA,E ; Set E low nop nop bsf PORTA,E ; Toggle E to get lower nibble bcf PORTA,E swapf PORTB,W ; Read lower nibble busy flag, DDRam address andlw 0x0F ; Mask out upper nibble iorwf TEMP,W ; Combine nibbles btfsc TEMP,7 ; Check busy flag, high = busy goto Busy ; If busy, check again bcf PORTA,R_W bsf STATUS,RP0 ; Select Register page 1 movlw 0x0F andwf TRISB,W movwf TRISB ; Set Port for output bcf STATUS,RP0 ; Select Register page 0 return ;======================================================================== ; PUTCHAR Sends character to LCD, Required character must be in W ;======================================================================== PutCHAR movwf CHAR ; Character to be sent is from W saved call Busy ; Wait for LCD to be ready ; Busy routine sets PORTB adequately movlw 0x0F andwf PORTB,F ; Clear the upper nibble movf CHAR,W andlw 0xF0 ; Get upper nibble iorwf PORTB,F ; Send data to LCD bcf PORTA,R_W ; Set LCD to write bsf PORTA,RS ; Set LCD to data mode bsf PORTA,E ; toggle E for LCD bcf PORTA,E movlw 0x0F andwf PORTB,F ; Clear the upper nibble swapf CHAR,W andlw 0xF0 ; Get lower nibble iorwf PORTB,F ; Send data to LCD bsf PORTA,E ; toggle E for LCD bcf PORTA,E return ;======================================================================== ; PutCMD Sends command to LCD, Required command must be in W ;======================================================================== PutCMD movwf CHAR ; Command to be sent is from W saved call Busy ; Wait for LCD to be ready movlw 0x0F andwf PORTB,F ; Clear the upper nibble movf CHAR,W andlw 0xF0 ; Get upper nibble iorwf PORTB,F ; Send data to LCD bcf PORTA,R_W ; Set LCD to write bcf PORTA,RS ; Set LCD to command mode bsf PORTA,E ; toggle E for LCD bcf PORTA,E movlw 0x0F andwf PORTB,F ; Clear the upper nibble swapf CHAR,W andlw 0xF0 ; Get lower nibble iorwf PORTB,F ; Send data to LCD bsf PORTA,E ; toggle E for LCD bcf PORTA,E return ;************************************************************************ ; End of LCD Module Subroutines ;************************************************************************ ;************************************************************************ ; Delay Routines ;************************************************************************ Delay_200ms movlw 0FFh ; Wait for 200ms for LCD to get powered up movwf R1 clrf R2 LCycle4 decfsz R2,F goto LCycle4 ; 3*256 decfsz R1,F ; 3*256+1 goto LCycle4 ;(3*256+2)*R1=770*R1 in processor cycles return ;************************************************************************ ; EEPROM READ ROUTINE ; ; Input: read address in USER_EEADR also in w ; Output: data in USER_EEDATA also in w ;************************************************************************ EE_read bcf STATUS,RP0 ; Bank 0 movf USER_EEADR,w; EE address movwf EEADR ; Address to read bsf STATUS,RP0 ; Bank 1 bsf EECON1,RD ; EE Read bcf STATUS,RP0 ; Bank 0 movf EEDATA,w ; w = EEDATA movwf USER_EEDATA ; Data return ;************************************************************************ ; EEPROM WRITE ROUTINE ; ; Input: write address in USER_EEADR also in w ; data in USER_EEDATA also in w ; Output: - ;************************************************************************ EE_write bsf STATUS,RP0 ; Bank 1 bcf INTCON,GIE ; INTs disabled bsf EECON1,WREN ; Enable write ;-------------------------------------------------------- ; Magic macro with EEPROM save (see 16C84 manual) ;-------------------------------------------------------- movlw 55h movwf EECON2 movlw 0AAh movwf EECON2 bsf EECON1,WR ee_wr1 btfsc EECON1,WR ; is the write completed? goto ee_wr1 ; loop until completed bsf INTCON,GIE ; Enable INTs return EE_Routines ;*********************************************************************** ; EEPROM MODE TEXTS ;*********************************************************************** movlw LINE0 iorlw 080h ; set cursor leftmost at the first line call PutCMD call Busy ; Wait until positioned (takes 40 us) movlw 'E' call PutCHAR ; Display character movlw 'E' call PutCHAR ; Display character movlw 'P' call PutCHAR ; Display character movlw 'R' call PutCHAR ; Display character movlw 'O' call PutCHAR ; Display character movlw 'M' call PutCHAR ; Display character movlw ' ' call PutCHAR ; Display character movlw LINE1 ; continue at right half of the display iorlw 080h ; Function set call PutCMD ; set cursor leftmost at the first line call Busy ; Wait until positioned (takes 40 us) movlw 'M' call PutCHAR ; Display character movlw 'O' call PutCHAR ; Display character movlw 'D' call PutCHAR ; Display character movlw 'E' call PutCHAR ; Display character movlw ' ' call PutCHAR ; Display character movlw '1' call PutCHAR ; Display character movlw '.' call PutCHAR ; Display character movlw '2' call PutCHAR ; Display character call Delay_200ms ; Show the text call Delay_200ms ; at least 7x200ms... call Delay_200ms ; call Delay_200ms call Delay_200ms call Delay_200ms call Delay_200ms movfw PORTB ; ...until RB0...RB3 are zero andlw 00Fh ; btfss STATUS,Z ; RB0...RB3 false? goto EE_Routines ; No movlw 001h ; Clear display call PutCMD call Busy ; Wait until cleared (takes 1.6 ms) clrf USER_EEADR clrf USER_EEDATA clrf EE_ALR_READ ;*********************************************************************** ; Switch routines ;*********************************************************************** Io_test Check_RB0 btfss PORTB,0 goto Check_RB1 incf USER_EEADR,1 ; USER_EEADR = USER_EEADR + 1 movf USER_EEADR,0 ; w = USER_EEADR sublw 00Fh ; EE Address range 0...F btfss STATUS,C ; if C = 0 --> negative result clrf USER_EEADR call Delay_200ms bcf EE_ALR_READ,0 ; reset if address is changed Check_RB1 btfss PORTB,1 goto Check_RB2 incf USER_EEDATA,1 call Delay_200ms Check_RB2 btfss PORTB,2 goto Check_RB3 decf USER_EEDATA,1 call Delay_200ms Check_RB3 btfss PORTB,3 goto Continue call Delay_200ms movf USER_EEADR,0 movwf EEADR movf USER_EEDATA,0 movwf EEDATA call EE_write ; bsf STATUS,RP0 ; Bank 1 ; bcf INTCON,GIE ; INTs disabled ; bsf EECON1,WREN ; Enable write ;-------------------------------------------------------- ; Magic macro with EEPROM save (see 16C84 manual) ;-------------------------------------------------------- ; movlw 55h ; movwf EECON2 ; movlw 0AAh ; movwf EECON2 ; bsf EECON1,WR ;ee_wr1 ; btfsc EECON1,WR ; is the write completed? ; goto ee_wr1 ; loop until completed ; bsf INTCON,GIE ; Enable INTs ;-------------------------------------------------------- movlw 001h ; Clear display call PutCMD call Busy ; Wait until cleared (takes 1.6 ms) movlw '*' call PutCHAR ; Display character movlw 'S' call PutCHAR ; Display character movlw 'A' call PutCHAR ; Display character movlw 'V' call PutCHAR ; Display character movlw 'E' call PutCHAR ; Display character movlw 'D' call PutCHAR ; Display character movlw '*' call PutCHAR ; Display character call Delay_200ms call Delay_200ms call Delay_200ms call Delay_200ms call Delay_200ms movlw 001h ; Clear display call PutCMD ; It takes about 1.6 ms call Busy ; Wait until cleared clrf EE_ALR_READ ;-------------------------------------------------------- Continue movlw 'A' call PutCHAR ; Display character movlw 'D' call PutCHAR ; Display character movlw 'D' call PutCHAR ; Display character movlw 'R' call PutCHAR ; Display character movlw ':' call PutCHAR ; Display character btfsc EE_ALR_READ,0 ; Data read, value not changed goto Display_EE call EE_read bsf EE_ALR_READ,0 ; Same data is read only once ;------------------------------------------------------------------------ Display_EE movf USER_EEADR,0 ; Display address left digit first andlw 0F0h movwf Help swapf Help,0 call CharTable ; Pick up char to be displayed call PutCHAR ; Display character movf USER_EEADR,0 andlw 00Fh call CharTable ; Pick up char to be displayed call PutCHAR ; Display character ;------------------------------------------------------------------------ movlw LINE1 ; continue at right half of the display iorlw 080h ; Function set call PutCMD ; set cursor leftmost at the first line call Busy ; Wait until positioned (takes 40 us) movlw 'D' call PutCHAR ; Display character movlw 'A' call PutCHAR ; Display character movlw 'T' call PutCHAR ; Display character movlw 'A' call PutCHAR ; Display character movlw ':' call PutCHAR ; Display character ;------------------------------------------------------------------------ movf USER_EEDATA,0 ; Display data left digit first andlw 0F0h movwf Help swapf Help,0 call CharTable ; Pick up char to be displayed call PutCHAR ; Display character movf USER_EEDATA,0 andlw 00Fh call CharTable ; Pick up char to be displayed call PutCHAR ; Display character ;------------------------------------------------------------------------ movlw LINE0 iorlw 080h ; Function set call PutCMD call Busy ; Wait until positioned (takes 40 us) goto Io_test ;************************************************************************ ; End of EEPROM routines ; Numeric routines ;------------------------------------------------------------------------ ; 3 byte substraction of the constant from the table which sets carry if ; result is negative ;------------------------------------------------------------------------ Subc24 clrf TEMP ; it will TEMPorary save C movf Index,W ; pointer to low byte of constant movwf HIndex ; W -> HIndex call DecTable ; W returned with low byte of constant bsf STATUS,C ; set C subwf LowB,F ; LowB - W -> LowB ; if underflow -> C=0 btfsc STATUS,C goto Step1 bsf STATUS,C movlw 1 subwf MidB,F ; decrement MidB ; if underflow -> C=0 btfsc STATUS,C goto Step1 bsf STATUS,C movlw 1 subwf HigB,F ; decrement HigB btfsc STATUS,C ; if underflow -> C=0 goto Step1 bsf TEMP,C ; set C Step1 decf HIndex,F movf HIndex,W ; pointer to middle byte of const call DecTable bsf STATUS,C subwf MidB,F ; MidB - W -> MidB btfsc STATUS,C ; if underflow -> C=0 goto Step2 bsf STATUS,C movlw 1 subwf HigB,1 ; decrement HigB btfsc STATUS,C ; if underflow -> C=0 goto Step2 bsf TEMP,C ; set C Step2 decf HIndex,F movf HIndex,W ; pointer to middle byte of constatnt call DecTable bsf STATUS,C subwf HigB,F ; HigB - W -> HigB btfsc STATUS,C ; if underflow -> C=0 goto ClearCF bsf STATUS,C goto SubEnd ClearCF rrf TEMP,C ; C -> STATUS SubEnd retlw 0 ; ------------------------------------------------------------------------ ; 3 byte addition of the constant from the table which sets carry if ; result overflows ; ------------------------------------------------------------------------ Addc24 clrf TEMP ; register for TEMPorary storage of C movf Index,W ; pointer to lower byte of const into W movwf HIndex ; save it into HIndex call DecTable ; W contains low byte of const bcf STATUS,C ; clear C addwf LowB,1 ; W + LowB -> LowB btfss STATUS,C ; test overflow goto Add2 bcf STATUS,C ; clear C movlw 1 addwf MidB,F ; increment MidB btfss STATUS,C goto Add2 bcf STATUS,C movlw 1 addwf HigB,F ; increment HigB btfss STATUS,C ; test overflow goto Add2 bsf TEMP,C ; store C Add2 decf HIndex,F ; pointer to middle byte into W movf HIndex,W call DecTable bcf STATUS,C addwf MidB,1 ; W + MidB -> MidB btfss STATUS,C goto Add3 bcf STATUS,C ; clear C movlw 1 addwf HigB,1 ; increment HigB btfss STATUS,C goto Add3 bsf TEMP,C Add3 decf HIndex,F ; pointer to higher byte into W movf HIndex,W call DecTable bsf STATUS,C addwf HigB,F ; W + HigB -> HigB, btfss STATUS,C goto ClarCF bsf STATUS,C goto AddEnd ClarCF rrf TEMP,C ; C -> STATUS AddEnd retlw 0 ;************************************************************************ ; Entry point for main cycle ;------------------------------------------------------------------------ ; Routine for the conversion of 3 byte number into 7 decimal numbers ;************************************************************************ Entry movlw 6*3-1 ; pointer to dec. table movwf Index ; 6*3-1 -> Index movlw 9 ; maximum of substractions movwf Count ; 9 -> Count clrf Help movlw 6 movwf LEDIndex Divide call Subc24 ; substract untill result is negative, btfsc STATUS,C ; add last substracted number goto Add24 ; next digit incf Help,F decf Count,F btfss STATUS,Z goto Divide movlw 3 subwf Index,F goto Next Add24 call Addc24 movlw 03h subwf Index,F Next movlw 9 movwf Count movlw LED1 ; LED1 -> W addwf LEDIndex,W ; LED1 + LEDIndex -> W movwf TEMP decf TEMP,F ; LEDIndex+LED1-1 -> TEMP movf TEMP,W movwf FSR ; W -> FSR movf Help,W ; Help -> W clrf Help ; save result at LEDx movwf INDF ; W -> LED(6..1) decf LEDIndex,F movlw 1 addwf Index,W btfss STATUS,Z goto Divide movf LowB,W movwf LED0 ; the rest -> LED0 ;------------------------------------------------------------------------- ; registers LED0..LED6 are filled with values - ready to be displayed ;------------------------------------------------------------------------- movlw 6 movwf LEDIndex ;-------------------------------------------------------------------------- ; Next clears DDRAM position 07h if 10 divider and normal mode is switched. ; Othervise it causes incorrect frequency reading because of decimal point ; location change. 14.500.1 MHz --> 8th character must be cleared! ; With 10 divider: 145.001 MHz (incorrectly 145.0011) ; Also address 0Bh must be cleared to prevent text MHzz ;-------------------------------------------------------------------------- movf USER_EEADR,0 ; Do it only if bit 3 state has been andwf PORTB,0 ; changed compared to the previous movwf USER_EEDATA ; value. btfsc USER_EEDATA,3 ; Is RB3 state changed? goto cursor_cntr ; No, pass next! movlw 7 ; locate cursor to address 07h (8th ch) iorlw 080h ; Function set call PutCMD ; Position cursor leftmost on second row call Busy ; Wait until positioned (takes 40 us) movlw ' ' ; Clear previous character call PutCHAR ; Display "empty" character movlw 00Bh ; locate cursor to address 00Bh (12th ch) iorlw 080h ; Function set call PutCMD ; Position cursor leftmost on second row call Busy ; Wait until positioned (takes 40 us) movlw ' ' ; Clear previous character call PutCHAR ; Display "empty" character ;-------------------------------------------------------------------------- cursor_cntr movlw LINE0 iorlw 080h ; Position cursor leftmost on first line call PutCMD call Busy ; Wait until positioned (takes 40 us) movf PORTB movwf USER_EEADR ; This flag is used as temporary variable ; for checking the same address read only ; once, if no changes for address. LEDCycle movlw LED0 ; LED0 -> W addwf LEDIndex,W ; LED1 + LEDIndex -> W movwf FSR ; W -> FSR movf INDF,W ; LED(0..6) -> W ;--------------------------------------------------------------------------- ; Following tests the 10 MHz digit value. If zero then not displayed. ; E.g. 0 3.6 9 4.0 0 MHz --> 3.6 9 4.0 0 MHz ; LEDIndex 6 5 4 3 2 1 0 value according to digit ;--------------------------------------------------------------------------- btfsc STATUS,Z goto Clear_zero iorlw 030h call PutCHAR ; Display character goto Next_test Clear_zero movlw 6 ; Is the LEDIndex value 6? bsf STATUS,Z subwf LEDIndex,W btfss STATUS,Z ; If ZERO is set, it is 6 goto Zero_ok movlw ' ' ; This is instead of '0' call PutCHAR ; Display character goto Next_test Zero_ok movlw '0' ; call PutCHAR ; Display character '0' Next_test ;-------------------------------------------------------------------- ; This tests the additional 10 divider and therefore controls the ; position of decimal point according to RB3 selection. ; E.g. f=145.500.0 / 10 = 14.550.00 --> decimal point move 145.500.0 ;-------------------------------------------------------------------- btfsc PORTB,3 ; If 0 then no 10 divider goto Ten_divider ; movlw 2 ; test for decimal point movwf Help2 goto Dec_point Ten_divider movlw 1 ; test for decimal point movwf Help2 ;-------------------------------------------------------------------- ;-------------------------------------------------------------------- ; Test for combination of 6 digits and 10 divider -> no need to ; display second decimal point --> skip to Second_dot_test. ; (e.g. 145.150. MHz -> 145.150 MHz ) ;-------------------------------------------------------------------- ;-------------------------------------------------------------------------- ; This tests the 10Hz or 100 Hz to be displayed as a last digit ;-------------------------------------------------------------------------- movlw 00Ah ; Test the number of digits (6 or 7) movwf USER_EEADR call EE_read btfss STATUS,Z ; If 1 then 7 digits goto Second_dot_test ; Skip second decimal point print ;-------------------------------------------------------------------------- Dec_point movf Help2,0 ; Help2 --> w bsf STATUS,Z subwf LEDIndex,W btfss STATUS,Z goto Second_dot_test movlw '.' ; this can be ' ' or ',' ...... call PutCHAR ; Display character Second_dot_test ;-------------------------------------------------------------------- ; **** 10 Divider test **** ; This tests first the additional 10 divider HW and therefore ; controls the position of decimal point according to RB3 selection. ; E.g. f=145.500.0 / 10 = 14.550.00 --> decimal point move 145.500.0 ; ; f = 1 4 5.5 0 0.0 MHz ; LEDIndex = 6 5 4 3 2 1 0 value in digit ;-------------------------------------------------------------------- btfsc PORTB,3 ; If 0 then no 10 divider goto Ten_divider2 ; movlw 5 ; test for decimal point goto Dec_point2 Ten_divider2 movlw 4 ; test for decimal point ;-------------------------------------------------------------------- Dec_point2 bsf STATUS,Z subwf LEDIndex,W btfss STATUS,Z goto sixth_mark movlw '.' ; this can be ' ' or ',' ...... call PutCHAR ; Display character sixth_mark movlw 9 ; Test the display type 1 x 16 LCD movwf USER_EEADR call EE_read btfss STATUS,Z ; If 0 then 1x16 LCD goto NoDot ; other type than 1x16 LCD ;------------------------------------------------------------------------- ; 1x16 LCD 9th character control. This is passed with other LCD types ;------------------------------------------------------------------------- movlw 1 ; 1x16 LCD bsf STATUS,Z ; test for 8th character subwf LEDIndex,W btfss STATUS,Z goto NoDot ; According to 1x16 LCD the 9th character address is 040h (LINE1 = 040h) movlw LINE1 ; continue at right half of display iorlw 080h ; Function set call PutCMD ; Position cursor leftmost on first line call Busy ; Wait until positioned (takes 40 us) ;-------------------------------------------------------------------------- NoDot decfsz LEDIndex,F goto LEDCycle ; continue with next number ;-------------------------------------------------------------------------- ; This tests the 10Hz or 100 Hz to be displayed as a last digit ; f = 1 4 5.5 0 0.0 MHz ; LEDIndex = 6 5 4 3 2 1 0 ;-------------------------------------------------------------------------- movlw 00Ah ; Test the number of digits (6 or 7) movwf USER_EEADR ; Read it from EEPROM address 0Ah. call EE_read btfss STATUS,Z ; If 1 then 7 digits goto MHz_text ; If 6 digits. LEDIndex 0 not displayed. ;-------------------------------------------------------------------------- movlw LED0 ; LED0 -> W addwf LEDIndex,W ; LED0 + LEDIndex -> W movwf FSR ; W -> FSR movf INDF,W ; [FSR] -> W iorlw 030h call PutCHAR ; Display character MHz_text movlw ' ' call PutCHAR ; Display character movlw 'M' call PutCHAR ; Display character movlw 'H' call PutCHAR ; Display character movlw 'z' call PutCHAR ; Display character movlw LINE0 iorlw 080h ; Function set call PutCMD ;------------------------------------------------------------------------- ; It is time to prepare new measuring cycle ;------------------------------------------------------------------------- clrf TimerH clrf TMR0 nop ; it is SUGGESTED... nop clrf LEDIndex movlw T1 ; set initial counter values movwf R1 movlw T2 movwf R2 movlw T3 movwf R3 clrf INTCON ; global INT disable, TMR0 INT disable ; clear TMR0 overflow bite ; ------------------------------------------------------------------------ ; Start measurement: RA3 + RA4 set input ; ------------------------------------------------------------------------ movlw b'00010000' ; all ports set L, RA4 set H movwf PORTA bsf STATUS,RP0 movlw b'00011111' ; RA0..RA4 input movwf TRISA bcf STATUS,RP0 ; ------------------------------------------------------------------------- ; It is opened now... ; ------------------------------------------------------------------------- Cycle btfss INTCON,2 ; 1 Test for TMR0 overflow goto Nothing ; 3 incf TimerH,F ; 3 bcf INTCON,2 ; 4 goto Nxt ; 6 Nothing nop ; 4 nop ; 5 nop ; 6 Nxt decfsz R1,F ; 7 goto Cycle ; 9 movlw T1 ; 9*T1 movwf R1 ; 9*T1+1 decfsz R2,F ; 9*T1+2 goto Cycle ; 9*T1+4 movlw T2 ;(9*T1+4)*T2 movwf R2 ;(9*T1+4)*T2+1 decfsz R3,F ;(9*T1+4)*T2+2 goto Cycle ;(9*T1+4)*T2+4 ; ------------------------------------------------------------------------ ; Final test for TMR0 overflow ; ------------------------------------------------------------------------ movlw T4 ;((9*T1+4)*T2+4)*T3 movwf Help ;((9*T1+4)*T2+4)*T3+1 Cycle2 btfss INTCON,2 ; 1 goto Not2Do ; 3 incf TimerH,F ; 3 bcf INTCON,2 ; 4 goto Nx ; 6 Not2Do nop ; 4 nop ; 5 nop ; 6 Nx decfsz Help,F ; 7 goto Cycle2 ; 9 ; nop ; ((9*T1+4)*T2+4)*T3+1+9*T4+Z ; nop ; Z times fine tuning nops ;------------------------------------------------------------------------- ; Fine tuning loops set by EEPROM parameters ;------------------------------------------------------------------------- movf EE_Fine1,0 movwf Help LCycleFine1 decfsz Help,F ; 1 Fine tuning loop 1 set by EEPROM goto LCycleFine1 ; 3 movf EE_Fine2,0 movwf Help LCycleFine2 nop ; 1 decfsz Help,F ; 2 Fine tuning loop 2 set by EEPROM goto LCycleFine2 ; 4 ; ------------------------------------------------------------------------ ; Stop the measurement ; ------------------------------------------------------------------------ clrw ; 1 movwf PORTB ; 2 movlw b'00010000' ; 3 RA0..RA3 = 0 movwf PORTA ; 4 W -> PORTA ; ((9*T1+4)*T2+4)*T3+1+9*T4+Z+4 bsf STATUS,RP0 ; movlw b'00010111' ; RA3 output Low movwf TRISA ; RA0..RA2,RA4 input bcf STATUS,RP0 ; btfsc INTCON,2 ; really final check incf TimerH,F bcf INTCON,2 ; ------------------------------------------------------------------------ ; Analyse precounter and store counted value in registers ; ------------------------------------------------------------------------ movf TMR0,W movwf MidB ; TMR0 -> MidB movf TimerH,W movwf HigB ; TimerH -> HigB clrf TEMP CountIt incf TEMP,F bsf PORTA,3 ; _| false impulz bcf PORTA,3 ; |_ bcf INTCON,2 movf TMR0,W ; actual TMR0 -> W bcf STATUS,Z subwf MidB,W btfsc STATUS,Z goto CountIt incf TEMP,F comf TEMP,F incf TEMP,F incf TEMP,W movwf LowB ; ------------------------------------------------------------------------ ; Frequency shift according value on RA2 pin or direct frequency display ; Both routines are simplified Subc24 and Addc24 routines ; ------------------------------------------------------------------------ movlw b'00010000' movwf PORTA bsf STATUS,RP0 movlw b'00000100' ; set RA2 as input movwf TRISA bcf STATUS,RP0 movlw 6 ; Test the direct freq EE-parameter movwf USER_EEADR ; It passes RA2, RB1, RB2 functions call EE_read btfsc STATUS,Z ; If 0 then direct frequency mode goto MFEnd ; EE address 06h data value is zero btfsc PORTB,E ; If RB2 = 1 then direct frequency goto MFEnd btfsc PORTA,E ; If RA2 = 1 then adds the RF ; If RA2 = 0 then subs the RF goto MFAdd ; ------------------------------------------------------------------------ ; First it must be checked which number is larger, than they are flipped ; if needed, than SUBSTRACT SMALLER from LARGER... ; Temporary nonused registers LED0..LED6 are used. ; ------------------------------------------------------------------------ SubMF movlw 0 btfsc PORTB,1 ; True? Then Mft2 movlw 3 ; 003h = Mft2_HigB movwf USER_EEADR call EE_read bsf STATUS,C ; set C flag bcf STATUS,Z ; clear Z flag subwf HigB,W ; HigB - W -> W btfss STATUS,C ; if negative result (W>HigB) goto Change ; flip numbers btfss STATUS,Z ; if result=0 continue goto SetNmbrs ; else substract movlw 1 ; test next byte btfsc PORTB,1 ; True? Then Mft2 movlw 4 ; 004h = Mft2_MidB movwf USER_EEADR call EE_read bcf STATUS,Z ; clear Z flag bsf STATUS,C ; set C flag subwf MidB,W ; MidB - W -> W btfss STATUS,C ; if negative result (W>MidB) goto Change ; flip numbers btfss STATUS,Z ; if ZERO continue goto SetNmbrs ; else substract movlw 2 ; else continue with next byte btfsc PORTB,1 ; True? Then Mft2 movlw 5 ; 005h = Mft2_LowB movwf USER_EEADR call EE_read bsf STATUS,C subwf LowB,W ; LowB - W -> W btfss STATUS,C ; if result is negative(W>LowB) goto Change ; flip numbers goto SetNmbrs ; else substract Change movlw 0 ; prepare substraction MF - F btfsc PORTB,1 ; True? Then Mft2 movlw 3 ; 003h = Mft2_HigB movwf USER_EEADR call EE_read movwf LED0 ; highest byte MF to LED0 movf HigB,W movwf LED4 ; highest freq. byte to LED4 movlw 1 btfsc PORTB,1 ; True? Then Mft2 movlw 4 ; 004h = Mft2_MidB movwf USER_EEADR call EE_read movwf LED1 ; middle to LED1 movf MidB,W movwf LED5 ; MidB -> LED5 movlw 2 btfsc PORTB,1 ; True? Then Mft2 movlw 5 ; 005h = Mft2_LowB movwf USER_EEADR call EE_read movwf LED2 ; LowMF -> LED2 movf LowB,W movwf LED6 ; LowB -> LED6 goto MFSub SetNmbrs movlw 0 ; prepare substraction F - MF btfsc PORTB,1 ; True? Then Mft2 movlw 3 ; 003h = Mft2_HigB movwf USER_EEADR call EE_read movwf LED4 ; HighMF -> LED4 movf HigB,W movwf LED0 ; HighB -> LED0 movlw 1 btfsc PORTB,1 ; True? Then Mft2 movlw 4 ; 004h = Mft2_MidB movwf USER_EEADR call EE_read movwf LED5 ; MiddleMF -> LED5 movf MidB,W movwf LED1 ; MidB -> LED1 movlw 2 btfsc PORTB,1 ; True? Then Mft2 movlw 5 ; 005h = Mft2_LowB movwf USER_EEADR call EE_read movwf LED6 ; LowMF -> LED6 movf LowB,W movwf LED2 ; LowB -> LED2 ; ------------------------------------------------------------------------ ; Registers are ready, continue with substraction ; ------------------------------------------------------------------------ MFSub movf LED6,W bsf STATUS,C ; set C subwf LED2,F ; LED2 - LED6 -> LED2 btfsc STATUS,C goto S1 bsf STATUS,C movlw 1 subwf LED1,F btfsc STATUS,C goto S1 bsf STATUS,C movlw 1 subwf LED0,F btfsc STATUS,C goto S1 S1 movf LED5,W bsf STATUS,C subwf LED1,F ; LED1 - LED5 -> LED1 btfsc STATUS,C goto S2 bsf STATUS,C movlw 1 subwf LED0,F ; decrement LED0 btfsc STATUS,C goto S2 S2 movf LED4,W subwf LED0,F ; LED0 - LED4 -> LED0 ; ---------------------------------------------------------------------- ; Substraction is finished, now store result to frequency registers ; ---------------------------------------------------------------------- movf LED0,W movwf HigB movf LED1,W movwf MidB movf LED2,W movwf LowB goto Entry ; ---------------------------------------------------------------------- MFAdd movlw 2 btfsc PORTB,1 ; True? Then Mft2 movlw 5 ; 005h = Mft2_LowB movwf USER_EEADR call EE_read bcf STATUS,C addwf LowB,F btfss STATUS,C goto AddMF2 bcf STATUS,C movlw 1 addwf MidB,F btfss STATUS,C goto AddMF2 bcf STATUS,C movlw 1 addwf HigB,F btfss STATUS,C goto AddMF2 AddMF2 movlw 1 ; 001h = Mft1_MidB btfsc PORTB,1 ; True? Then Mft2 movlw 4 ; 004h = Mft2_MidB movwf USER_EEADR call EE_read ; read from EEPROM bcf STATUS,C addwf MidB,F btfss STATUS,C goto AddMF3 bcf STATUS,C movlw 1 addwf HigB,F btfss STATUS,C goto AddMF3 AddMF3 clrw ; 000h = Mft1_HigB btfsc PORTB,1 ; True? Then Mft2 movlw 3 ; 003h = Mft2_HigB movwf USER_EEADR call EE_read addwf HigB,F MFEnd goto Entry ; start new cycle ; ------------------------------------------------------------------------ end